Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 34(19): 8760-8768, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36444288

RESUMEN

A key step in creating efficient and long-lasting catalysts is understanding their deactivation mechanism(s). On this basis, the behavior of a series of Pd/corundum materials during several hydrogen adsorption/desorption cycles was studied using temperature-programmed desorption coupled with mass spectrometry and aberration-corrected transmission electron microscopy. The materials, prepared by impregnation and by sputtering, presented uniform well-dispersed Pd nanoparticles. In addition, single atoms and small clusters of Pd were only detected in the materials prepared by impregnation. Upon exposure to hydrogen, the Pd nanoparticles smaller than 2 nm and the single atoms did not present any change, while the larger ones presented a core-shell morphology, where the core was Pd and the shell was PdH x . The results suggest that the long-term activity of the materials prepared by impregnation can be attributed solely to the presence of small clusters and single atoms of Pd.

2.
RSC Adv ; 11(44): 27267-27275, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35480653

RESUMEN

The development of future mobility (e.g. electric vehicles) requires supercapacitors with high voltage and high energy density. Conventional active carbon-based supercapacitors have almost reached their limit of energy density which is still far below the desired performance. Advanced materials, particularly metal hydroxides/oxides with tailored structure are promising supercapacitor electrodes to push the limit of energy density. To date, research has largely focused on evaluation of these materials in aqueous electrolyte, while this may enable high specific capacitance, it results in low working voltage window and poor cycle stability. Herein, we report the development of Ni2Mn-layered double oxides (Ni2Mn-LDOs) as mixed metal oxide-based supercapacitor electrodes for use in an organic electrolyte. Ni2Mn-LDO obtained by calcination of [Ni0.66Mn0.33(OH)2](CO3)0.175·nH2O at 400 °C produced the best performing Ni2Mn-LDOs with high working voltage of 2.5 V and a specific capacitance of 44 F g-1 (at 1 A g-1). We believe the performance of the Ni2Mn-LDOs is related to its unique porous structure, high surface area and the homogeneous mixed metal oxide network. Ni2Mn-LDO outperforms both the single metal oxides (NiO, MnO2) and the equivalent physical mixture of the two oxides. We propose this performance boost arises from synergy between NiO and MnO x due to a more effective homogeneous network of NiO/MnO x domains in the Ni2Mn-LDO. This work clearly shows the advantage of an LDO over the single component metal oxides as well as the physical mixture of mixed metal oxides and highlights the possibilities of development of further mixed metal oxides-based supercapacitors in organic electrolyte using LDH precursors.

3.
Chem Commun (Camb) ; 56(31): 4328-4331, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32191244

RESUMEN

Vapour-phase surface-initiated cationic polymerisation of ethylvinylether occurs at single-crystals of the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(NBA)][BArF4]. This new surface interface makes these normally very air sensitive materials tolerant to air, while also allowing for onward single-crystal to single-crystal reactivity at metal sites within the lattice.

4.
Nat Commun ; 10(1): 2398, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186407

RESUMEN

One of the major challenges in the circular economy relating to food packaging is the elimination of metallised film which is currently the industry standard approach to achieve the necessary gas barrier performance. Here, we report the synthesis of high aspect ratio 2D non-toxic layered double hydroxide (LDH) nanosheet dispersions using a non-toxic exfoliation method in aqueous amino acid solution. High O2 and water vapour barrier coating films can be prepared using food safe liquid dispersions through a bar coating process. The oxygen transmission rate (OTR) of 12 µm PET coated film can be reduced from 133.5 cc·m-2·day-1 to below the instrument detection limit (<0.005 cc·m-2·day-1). The water vapour transmission rate (WVTR) of the PET film can be reduced from 8.99 g·m-2·day-1 to 0.04 g·m-2·day-1 after coating. Most importantly, these coated films are also transparent and mechanically robust, making them suitable for flexible food packing while also offering new recycling opportunities.


Asunto(s)
Embalaje de Alimentos/métodos , Hidróxidos/química , Nanoestructuras , Aminoácidos , Oxígeno/química , Permeabilidad , Tereftalatos Polietilenos , Reciclaje , Vapor , Agua/química
5.
Dalton Trans ; 47(1): 143-149, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29210404

RESUMEN

A series of silica@layered double hydroxides (SiO2@Mg2Al-CO3-AMO-LDHs) have been synthesised by in situ precipitation of Mg2Al-CO3-LDH at room temperature in the presence of amorphous spherical silica particles (∼500 nm). We have systematically investigated a number of synthetic parameters in order to evaluate their effects on the composition, morphological and physical properties of the isolated materials. Syntheses carried out at moderate stirring speeds (e.g. 500 rpm) were found to promote the formation of vertically aligned LDH platelets with respect to the silica surface. Addition rates of the metal solutions slower than 0.43 mmol h-1 were found to create a thicker LDH shell consisting of vertically aligned LDH platelets. When the metal solutions were added rapidly (0.86 mmol h-1), we observed that for both slow and fast stirring speeds the synthesised core-shell materials had thin LDH shells and the majority of the LDH precipitated independent of the silica, forming unbound "free" LDH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...